翻訳と辞書
Words near each other
・ Cylindera paludosa
・ Cylinders of Nabonidus
・ Cylindilla
・ Cylindilla bidentata
・ Cylindilla formosana
・ Cylindilla grisescens
・ Cylindilla inornata
・ Cylindilla interrupta
・ Cylindilla makiharai
・ Cylindilla parallela
・ Cylindracanthus
・ Cylindraspis
・ Cylindrecamptus lineatus
・ Cylindrellinidae
・ Cylindrepomus
Cylindric algebra
・ Cylindric numbering
・ Cylindrical algebraic decomposition
・ Cylindrical coordinate system
・ Cylindrical drum
・ Cylindrical equal-area projection
・ Cylindrical grinder
・ Cylindrical harmonics
・ Cylindrical joint
・ Cylindrical lanternshark
・ Cylindrical lens
・ Cylindrical lioplax
・ Cylindrical multipole moments
・ Cylindrical perspective
・ Cylindrical σ-algebra


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Cylindric algebra : ウィキペディア英語版
Cylindric algebra
The notion of cylindric algebra, invented by Alfred Tarski, arises naturally in the algebraization of first-order logic with equality. This is comparable to the role Boolean algebras play for propositional logic. Indeed, cylindric algebras are Boolean algebras equipped with additional cylindrification operations that model quantification and equality. They differ from polyadic algebras in that the latter do not model equality.
== Definition of a cylindric algebra ==

A cylindric algebra of dimension \alpha (where \alpha is any ordinal number) is an algebraic structure (A,+,\cdot,-,0,1,c_\kappa,d_)_ such that (A,+,\cdot,-,0,1) is a Boolean algebra, c_\kappa a unary operator on A for every \kappa, and d_ a distinguished element of A for every \kappa and \lambda, such that the following hold:
(C1) c_\kappa 0=0
(C2) x\leq c_\kappa x
(C3) c_\kappa(x\cdot c_\kappa y)=c_\kappa x\cdot c_\kappa y
(C4) c_\kappa c_\lambda x=c_\lambda c_\kappa x
(C5) d_=1
(C6) If \kappa\notin\, then d_=c_\kappa(d_\cdot d_)
(C7) If \kappa\neq\lambda, then c_\kappa(d_\cdot x)\cdot c_\kappa(d_\cdot -x)=0
Assuming a presentation of first-order logic without function symbols,
the operator c_\kappa x models existential quantification over variable \kappa in formula x while the operator d_ models the equality of variables \kappa and \lambda. Henceforth, reformulated using standard logical notations, the axioms read as
(C1) \exists \kappa. \mathit \Leftrightarrow \mathit
(C2) x \Rightarrow \exists \kappa. x
(C3) \exists \kappa. (x\wedge \exists \kappa. y) \Leftrightarrow (\exists\kappa. x) \wedge (\exists\kappa. y)
(C4) \exists\kappa \exists\lambda. x \Leftrightarrow \exists \lambda \exists\kappa. x
(C5) \kappa=\kappa \Leftrightarrow \mathit
(C6) If \kappa is a variable different from both \lambda and \mu, then \lambda=\mu \Leftrightarrow \exists\kappa. (\lambda=\kappa \wedge \kappa=\mu)
(C7) If \kappa and \lambda are different variables, then \exists\kappa. (\kappa=\lambda \wedge x) \wedge \exists\kappa. (\kappa=\lambda\wedge \neg x) \Leftrightarrow \mathit

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Cylindric algebra」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.